UUCMS. No.

B.M.S COLLEGE FOR WOMEN BENGALURU - 560004

I SEMESTER END EXAMINATION – APRIL 2024

M.Sc – MATHEMATICS- DISCRETE MATHEMATICS

(CBCS Scheme-F+R)

Course Code MM105T Duration: 3 Hours

QP Code: 11005 Max. Marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

- 1. a) Obtain the principal conjunctive normal form of $(\sim p \rightarrow r) \land (q \leftrightarrow p)$ without using truth table.
 - b) Give (i) direct proof (ii) indirect proof and (iii) proof by contradiction for the following statement: "If n is an odd integer then (n + 9) is an even integer".
 - c) Test the validity of the following argument."If I study then I will not fail in mathematics. If I do not play basketball then I will study. But I failed in mathematics. Therefore, I must have played basketball".

(4+6+4)

- 2. a) An urn contains 15 balls, 8 of which are red and 7 are black. In how many ways can we choose
 - (i) 5 red balls?
 - (ii) 7 balls such that atleast five are red?
 - b) Show that if any five numbers are chosen from 1 to 8, then two of them will have their sum equal to 9.
 - c) In how many ways can eight identical cookies be distributed among three distinct children if each child receives atleast two cookies but not more than four cookies?
 (4+5+5)
- 3. a) Model the rabbit population as recurrence relation and solve it explicitly.
 - b) Using generating functions solve the recurrence relation a_n = 6a_{n-1} 8a_{n-2} + 3ⁿ (n ≥ 2) with initial conditions a₀ = 3 and a₁ = 7.
 c) Solve the recurrence relation a_n = 6a_{n-1} 9a_{n-2} with a₀ = 1 and a₁ = 6.

(5+5+4)

4. a) Using Warshall's algorithm find the transitive closure of the relation R on $A = \{a, b, c, d\}$ given by

- b) If (L, \leq) is a lattice then prove the following:
 - (i) $a \leq b \Longrightarrow a \lor c \leq b \lor c$.
 - (ii) $a \leq b \Longrightarrow a \wedge c \leq b \wedge c$.
 - (iii) $a \leq b$ and $c \leq d \Rightarrow a \lor c \leq b \lor d$.
 - (iv) $a \leq b$ and $c \leq d \Rightarrow a \land c \leq b \land d$ where $a, b, c, d \in L$.
- c) Draw the Hasse diagram representing the partial ordering $\{(a, b) \mid a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12, 24, 36\}$.

(5+5+4)

- 5. a) State and prove the Handshaking lemma. Hence prove that the number of odd degree vertices in a graph is always even.
 - b) Define a self complementary graph \overline{G} of a graph G and give an example. Show that every self complementary graph has 4n or 4n + 1 vertices, where n is a positive integer.
 - c) Define eccentricity, radius r(G), center and diameter d(G) of a graph *G*. Prove that for any connected graph G, $r(G) \le d(G) \le 2r(G)$.
- 6. a) Prove that in a graph $G, k(G) \le \lambda(G) \le \delta(G)$, with standard notations. (5+5+4)
 - b) Using Dijkstra's algorithm find the shortest path from '*a*' to all other vertices, in the following graph.

c) Prove that an edge e in a graph G is a bridge if and only if e does not lie on any cycle of G.

(5+5+4)

- 7. a) Prove that a non-trivial connected graph G is Eulerian if and only if degree of every vertex of G is even.
 - b) State and prove Ore's theorem for a Hamiltonian graph.
 - c) State and prove Euler's polyhedron formula.

(5+5+4)

BMSCW LIBRARY

- 8. a) Prove that every tree has one or two central vertices.
 - b) For the following weighted graph find the minimum spanning tree using Kruskal's algorithm.

c) Define a binary tree. Prove that the number of pendent vertices in a binary tree with p vertices is $\left(\frac{p+1}{2}\right)$.

**** BMA

(5+5+4)